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Abstract. A non-translationally invariant spherical model, in which only a finite number of 
spins interact, is solved exactly. The model exhibits a phase transition in a non-zero uniform 
field, without spontaneous magnetization. The anomalous transition is attributed to the 
finite number of interacting spins taking on abnormally large values of order NI’’ without 
contributing to the magnetization. The free energy of the model can be obtained from a 
spherical limit (n -a) of a corresponding n-vector model. In zero field the free energy is of 
the Curie-Weiss (or mean-field) spherical form. The Curie-Weiss form can only be 
maintained in a field by admitting a non-uniform field of order N”*. This modified spherical 
model is also accessible from an n +CO limit of a corresponding n-vector model. 

1. Introduction and summary 

In treating the spherical model (Berlin and Kac 1952) it has become customary (Joyce 
1972) to assume translationally invariant interactions. In this paper we solve a non- 
translationally invariant spherical model exactly. The solution allows a direct study of 
the resulting anomalous phase transition. 

The model consists of a set of N spherical spins -a C x ,  < 00, i = 1, 2, . . . , N, with 
the non-translationally invariant interaction energy 

N x= - 1 pijxjxj - H  c xi, 2 s k < N  
l s i < j < k  i = l  

where k is a fixed integer and the spins are subject to the spherical constraint 

N 
x ? = N .  

i = l  

The partition function is (p = l / k , T )  

k N 

ZN(p, H) = AN1 I - a I dNx exp( i p  pijxixj +pH xi), 

where we have set pij = pji and pii = 0. The normalization constant is given by 

i J  = 1 i = l  
zEi.r?=N 

AN = (2.rr)”2N”-’’’2/r(N/2) 

57 1 



572 P A  Pearce and CJThompson 

and for later use we note that by Stirling% formula 

lim N-’ In AN = (In 277 + 1)/2. 
N+a,  

For definiteness in our calculation we will restrict ourselves to the ferromagnetic 
case (pij 3 0) with p a cyclic k X k matrix. The maximum eigenvalue A of p is then given 
by 

independent of the value of i. 
The case k = 2, H = 0 of (1.1) was discussed by Lieb and Thompson (1969), who 

showed that the free energy is identical to that of the Curie-Weiss (or mean-field) 
spherical model, in which all spins interact equally with one another. We show that this 
is not the case for the model (1.1) in non-zero field (H # 0). 

The motivation for considering the model (1.1) comes from a recent paper (Pearce 
and Thompson 1976), in which we made an incomplete comparison with the corres- 
ponding n-vector model in the spherical limit (n +CO). The main result of this previous 
paper was that the free energy +; of a certain anisotropic n-vector model is equal to the 
Curie-Weiss spherical model free energy in the spherical limit (n +CO). To be more 
precise, we introduce the n-vector model defined by the Hamiltonian 

k 

= - 1 prjSlaSJa - ( n / k ) ’ / 2 H  ‘f f Si, 
a = l  l s i < j c N  a = l  r = l  

and partition function 

OXP,  H) = ( A n  1-N J’ * * - J’ exp(-pX;) dNS, 
lls,/l= n ’ l 2  

where the n-dimensional spins have norm 

Our previous result can now be stated as 

= min a v r 2  - (1 + 4 ~ ~ ) ’ ~ ~  + 1 + ln{i[1+ (1 + 4~’)’’~]1>~ 
,a0 

where 

z = vr +pH, 

and 
N 

v = p  lim N-’ C piJ<c0. 
N-+m 1 , ] = 1  

Here p is an N x  N matrix, assumed to be cyclic. 

(1.9) 

(1.10) 

(1.11) 

(1.12) 
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In zero field (1.10) reduces to the free energy of the Lieb and Thompson (1969) 
model, 

(1.13) 

in accord with the observed equivalence (Hikami 1974) of this model and the corres- 
ponding limiting anisotropic n-vector model. In the present context of non-zero field it  
is important to stress that, following Moore et a1 (1974), an anisotropic field was 
considered in our previous paper (i.e. in (1.7)). This necessitated taking the external 
field H of order n 1’2 to achieve a field contribution to the free energy. Here we show 
that if the allied, and perhaps more natural, n-vector Hamiltonian 

k N 

a = l  lS i<I=N a = l  r = l  
% = - c c prls,,sla - H  2 2 si,, (1.14) 

with an isotropic field, is considered in place of (1.7), then the pathological spherical 
model (1.1) obtains in the spherical limit (n + 00). It follows as a consequence that some 
care must be exercised in proceeding to the spherical limit (n + 00) for systems with 
anisotropic interactions. 

In summary, the thermodynamic quantities for model (1.1) are obtained in § 2. We 
find that, under the assumed conditions on p ,  the free energy @ ( P , H )  and the 
magnetization m(P, H )  are given respectively by 

-p@, H )  = lim N-’ In ZN(p, H )  = t [ z ,  - In z ,  - 1 + (p2H2/z , ) ]  
N-s: 

( k  fixed) 

and 

where 

The critical temperature T,(H) is found to depend on the field according to 

k,  T J H )  = A 1 - H2/A 1 ,  IHI < A  1. 

When (HI 2 A I  there is no phase transition. 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

In order to elucidate the pathological nature of the phase transition we investigate 
various order parameters in § 3. In particular, it is shown that the singular free energy 
without spontaneous magnetization (from (1.16)) is due to the fact that the single spin 
averages ( x , )  in the ‘low-temperature’ region are of order N 1 l 2  for 1 s i S k and of order 
unity for k + 1 s i =s N, while all are of order unity in the high-temperature region: the 
shift to order N’/* values reflecting singular behaviour without contributing to the 
spontaneous magnetization. 

Finally, contact is made with the n-vector model in 0 4, where we show that the free 
energy (1.15’), of the anisotropic spherical model (l.l), can be obtained from the 
anisotropic n-vector model (1.14) in the spherical limit (n+w) .  To complete the 
identification of limiting n-vector models with spherical models, we further show that 
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the limiting free energy (1.10) of the anisotropic n-vector model (1.7) with an 
anisotropic field is obtained from the anisotropic spherical model with interaction 
energy 

(1.19) 

by admitting a field, dependent on the number of spins N, and acting only on the k 
interacting spins. 

2. The thermodynamic functions 

To evaluate the partition function (1.3) we write the spherical constraint as a S function 
in the integrand to obtain 

Using the integral representation 
1 r iw 

=A J exp(-sx) ds 27rl -im 

for the S function we then obtain (Berlin and Kac 1952) 

where 

and a is taken large enough so that the contour in (2.3) is to the right of all singularities 
of ON@, H ;  $1. 

The auxiliary function ON(@, H ;  s) is the mean-spherical partition function. Direct 
evaluation yields 

k k 
X I . . . / O0 dkx exp( - (saij -$ppi j )xix,  + pH 1 x i )  (2.5) 

-W -m i,] = 1 i = l  

k fl (s exp = *N/zS-(N-k)/2 

r = l  

provided 

Res >$A,. (2.7) 
Here A, are the k eigenvalues of the matrix p introduced by the diagonalization of the 
quadratic form in the exponent of (2.5). 
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The integral (2.3) can now be evaluated by the method of steepest descents (Berlin 
and Kac 1952) giving for the free energy (see (1.5)) 

-P@, H) = lim N’ In ZN(P, H )  
N - w  

where the saddle point s = ;zs is determined from 

1 p 2 H 2  I=--+- 
z, 2 ;  ’ 

that is, 
2 2 1/2 rs(P,H)=++tb+P H )  . 

(2.10) 

(2.11) 

The function Q N ( p ,  H ;  s )  is only analytic in the complex plane cut from the branch 
point s = ;PA to s = -00, so the above saddle point method is only valid if the saddle 
point occurs to the right of the branch point, i.e., 

Z S P ,  H ) > P A i .  (2.12) 

This inequality is satisfied if 

IHI>h 
or 

(2.13) 

(2.14) 

This ‘high-temperature’ region is separated from the ‘low-temperature’ region in the 
temperature-field plane by the critical curve 

In the ‘low-temperature’ region, 

we must evaluate a contour integral. The integral to consider is 

(2.15) 

(2.16) 

(2.17) 

dz (2.18) 

where we have set v = PA 1 ,  B = PH and z = Ns. This integral can be evaluated by using 
the inverse Laplace transforms (ErdClyi 1954): 

- - ~ ‘ / ~ r ( ~ / 2 )  aN+im ez(z - + u ~ ) - l / 2 z - N / 2  eN2B2/4z  
27ri aN-im 

(2.19) 
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and 

Here I, is a modified Bessel function of order p. By the convolution formula the 
integral (2.18) becomes 

(N/?r)1/2r(N/2) [(I - t ) - 1 / 2  eiu~(l-l) t ~ N - I  I~N-1(NBt”2)/($NBt1/2)~N-1]  dt. (2.21) 

This integral can now be evaluated by Laplace’s method. We have the asymptotic 
formula (Pearce and Thompson 1976) 

1 

0 

r(N/2)1$N- 1 (NZ)/($Nz)’ N-l 

-expI[~/2{(1 +422)1/2- l - ln$[l  +( I  +422)i/2]}] as N-, 03. 

(2.22) 

Hence we conclude that 

= max $I[v(l - t )  + In t + (1 + 4 p ’ ~ ~ t ) ’ / ~  - 1 - ln{$[l+ (1 + 
OSIGl 

(2.23) 

For Y <$+(a+P2H2)1/2, that is in the ‘high-temperature’ region, the maximum 
occurs for f = 1 so that the solution (2.23) is easily seen to reduce to the normal saddle 
point solution given by (2.9) and (2.11). In the ‘low-temperature’ region, v >  
$ + (a + p2H2)1’2, the maximum occurs when 

t = ( v + p 2 H Z ) / v 2  (2.24) 

and consequently 

(2.25) 

Comparison with (2.9) and (2.12) shows that the solution (2.25) can be interpreted as 
arising from the ‘sticking’ of the saddle point at z ,  = v = P A  in the ‘low-temperature’ 
region. It is precisely this ‘sticking’ of the saddle point that is responsible for the break in 
analyticity of the free energy on the critical curve given by (2.15). 

To evaluate the remaining thermodynamic functions, we hold the temperature fixed 
and write 

2,-ln 2,- 1 +- (2.26) 

with 

(2.27) 
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The magnetization is now given by 

and the susceptibility by 

In particular, we remark that there is no spontaneous magnetization and that the 
susceptibility remains finite with a simple jump discontinuity across the critical curve, 
except at the ‘Curie point’, H = 0, kBT = A where it has a cusp. 

3. Order parameters 

The usual thermodynamic functions are not very illuminating as to the mechanism of 
the phase transition. To elucidate the matter, we will investigate the order of magnitude 
of the spins as N + CO. 

We compute ( x , )  and begin by noting that, since p is a cyclic matrix, 

Next, we introduce the auxiliary function 

QN(P, H, H‘; s) 

Clearly from (2.3) we can now write 

(3.3) 

In proceeding some care must be exercized. The contour integral to be considered 
now is 

(3.5) 
2A N1 TF =- +Im ds eN~rN/2 -N/2 (s -iV)-, eNB2/4~ ekB2/4 ( s - fv )  

2 r i  I,-,, 
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Again by the convolution formula and the inverse Laplace transform (2.20) we have 

T, = Nw-;I'(N/2) I dt e4'"'"" 
1 

0 

IP-'((  kNB2) 'I2( 1 - t )  'I2) N-l IfN-l(NBt' /2)  
x ( 1  - t)@-' ($(kNB2)'/2(1 - t)'")'-' ($NBt1/2)b N-l * (3.7) 

Laplace's method can now be applied to this integral as before, only now we need the 
asymptotic formula (Abramowitz and Stegun 1964) 

for the first modified Bessel function in (3.7). 
Returning to ( 3 . 1 ) ,  ( 3 .2 )  and (3 .4)  we see that 

where the critical value of t is given, as found previously, by 

(3.9) 

(3.10) 

We conclude that for 1 s i c k 

0 T >  TC(W 

sgn H T <  TC(H).  
lim N- ' / ' ( x , )  = Y - p 2 1 j 2 ) 1 / 2  (3.11) 

N-m 

kv2 

It is now clear that the phase transition is characterized by the finite number of 
interacting spins taking on abnormally large values of order N112 below the critical 
temperature. Notwithstanding the magnetization is entirely due to non,-interacting 
spins since from (2.28) 

1 k  N - k  
= lim - 1 ( x i ) +  lim ---(xi) j > k  ~ + c o N , = 1  N + m  N 

= lim (x i ) ,  j > k .  
N + m  

(3.12) 

(3.13) 

The non-interacting spins are clearly of order unity as N - ,  00. 
The failure of the k interacting spins to contribute to the magnetization explains 

the absence of spontaneous magnetization in the model ( 1 . 1 ) .  Notice, however for 
l < i i k k ,  

(3.14) 

breaking the zero-field symmetry. The order of taking the limits here cannot be 
interchanged. 
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Although the result (3.14) is reminiscent of spontaneous magnetization, it is not 
connected in any way to the analyticity of the free energy $@, H). It does, however, 
provide a clue on how to rig the field terms to recover the Curie-Weiss free energy, 
thereby making contact with the n + 00 limit of the anisotropic n-vector model (1.7). 
This will be pursued in the next section after first identifying the anisotropic spherical 
model (1.1) as a limiting n-vector model. 

4. The spherical limit 

The limiting free energy for the n -vector model, 

k N 

g n  = - 1 pijsiasja - H  f 1 si,, 
n = l  l S i < j < N  n = l  i = l  

can be obtained by a trivial extension of the analysis of Pearce and Thompson (1976). 
The result is 

where 

z = ( v2r2+p2H2)1 /2  (4.3) 

The form of the free energy (4.2) is exactly the same as that found in the anisotropic 
field case (1.10). The local field z,  however, is given, according to the extended analysis, 
by 

where the k-vector r is the projection of the magnetization onto k-space, the n-vector 
field H i s  given by 

H = ( H ,  H , .  . . , H) (4.5) 

and (cf (1.12)) 
N 

lim VN = lim PN-' 1 pij = v, 
N+oo N+m i,j = 1 

(4.6) 

Hence (cf (1.1 1)) 

z = n+m lim ( n=l f (vra + n - ' / 2 p ~ 2 + n - '  a = k + l  f p z ~ i l ) ~ ' ~  (4.7) 

(4.8) = ( v211r(I2 + p 2H2)1/2 ( v2r2 + p2H2)1'2. 

This formula can be interpreted as saying that for large n the external field in (4.1) is 
essentially transverse. 

The minimum in (4.2) is evaluated straightforwardly. For v > i + ( i + p 2 H 2 ) 1 / 2  the 
minimum occurs for vr = ( V ~ - V - P ~ H ~ ) ~ / ~ .  For Y C $ + ( ~ + P ~ H ' ) ~ / ~  the minimum is 
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attained at r = 0. It follows that 

(4.9) 

With the correspondence v = PA it is now easily seen that 

lim +n (P,  = rcI(P, H) (4.10) 

with @(P, H) given by (1.15) and (1.17). This establishes that the spherical model (1.1) 
and the n-vector model (4.1) are thermodynamically equivalent in the limit N, n +CO 

( k  fixed). 
It remains to be shown that the n-vector model (1.7), with an anisotropic field, is 

thermodynamically equivalent in the spherical limit to the spherical model defined by 

n+m 

k 

2’ = - 1 pijxlxj - ( N / k ) ’ / * H  1 x , .  
1 S i , j s k  i = l  

(4.11) 

To calculate the partition function of this anisotropic spherical model we follow Lieb 
and Thompson (1969) and first integrate over the variables & + I ,  x k + 2 ,  . . . , xN We then 
introduce y l  = N - 1 / 2 x i  for i = 1’2, . . , , k,  so that for the purposes of calculating the free 
energy we can take 

r:= , y f s  1 

(4.12) 

Here Laplace’s method can be applied directly yielding 

-p+’ = lim N-’ In ZL 
N+m 

= max [$PA r + Br + 4 In( 1 - r*) ] .  
O s s r s  1 

This last step follows from the inequalities 

(4.13) 

(4.14) 

k f PilYiY, c Y :  (4.15) 
I , ]  = 1 i = l  

and 

k-lI2 f y l  s ( ‘f y : ) 1 / 2  
1 = 1  i = l  

(4.16) 

and the observation that the equalities hold if and only if all the y l  are equal. 
The maximum in (4.14) occurs for r a solution of the stationary equation (v = PA 1 )  

vr3 + Br2 + ( 1 - v) r - B = 0. (4.17) 
This is precisely the equation determining r in the limiting n-vector free energy (1.10). 
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Moreover, writing this equation as 

vr+B=r/(l-r’)  (4.18) 

it is readily seen that there is exactly one positive root and that this root occurs in the 
range 0 s r s 1. It is now straightforward to show that 

by using the equation (cf (4.18)) 

r’i + r - z  =o. (4.21) 

This establishes that the free energy of the spherical model (4.11) is of the required 
limiting n -vector form given by (1.10) and (1.11). 

Acknowledgment 

PAP acknowledges support from a Commonwealth Postgraduate Research Award. 

References 

Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (Washington National Bureau of 

Berlin T H and Kac M 1952 Phys. Reu. 86 821-35 
Erdtlyi A (ed.) 1954 Tables of Integral Transforms vol. 1 (New York: McGraw-Hill) 
Hikami S 1974 Bog. Theor. Phys. 52 1431-7 
Joyce G S 1972 Phase Transitions and Critical Phenomena vol. 2, eds C Domb and M S Green (New York: 

Lieb E H and Thompson C J 1969 J. Math. Phys. 10 1403-6 
Moore M A, Saul D M and Wortis M 1974 J. Phys. C :  Solid Sr. Phys. 7 162-70 
Pearce P A and Thompson C J 1976 Rog. Theor. Phys. 55 665-71 

Standards, AMs 55) p 377 

Academic) pp 375-442 


